First-Kind Boundary Integral Equations for the Hodge--Helmholtz Operator
نویسندگان
چکیده
منابع مشابه
Wavelet Approximations for First Kind Boundary Integral Equations on Polygons
An elliptic boundary value problem in the interior or exterior of a polygon is transformed into an equivalent rst kind boundary integral equation. Its Galerkin discretization with N degrees of freedom on the boundary with spline wavelets as basis functions is analyzed. A truncation strategy is presented which allows to reduce the number of nonzero elements in the stiiness matrix from O(N 2) to ...
متن کاملOperator Theoretic Treatment of Linearabel Integral Equations of First Kind
We consider a linear Abel integral operator A : L 2 (0; 1) ?! L 2 (0; 1) deened by (A y)(t) = 1 ?() Z t 0 (t ? s) ?1 K(t; s)y(s)ds; 0 t 1; 0 < 1: We construct a scale fX g 2R of Hilbert spaces of functions in (0; 1) and relate it with a Hilbert scale of Sobolev spaces. Under suitable assumptions on K, we prove that kA uk L 2 (0;1) gives an equivalent norm in X ?. On the basis of this equivalenc...
متن کاملA fast numerical solution for the first kind boundary integral equation for the Helmholtz equation
The main purpose of this paper is to develop a fast numerical method for solving the first kind boundary integral equation, arising from the two-dimensional interior Dirichlet boundary value problem for the Helmholtz equation with a smooth boundary. This method leads to a fully discrete linear system with a sparse coefficient matrix. We observe that it requires a nearly linear computational cos...
متن کاملHomotopy approximation technique for solving nonlinear Volterra-Fredholm integral equations of the first kind
In this paper, a nonlinear Volterra-Fredholm integral equation of the first kind is solved by using the homotopy analysis method (HAM). In this case, the first kind integral equation can be reduced to the second kind integral equation which can be solved by HAM. The approximate solution of this equation is calculated in the form of a series which its components are computed easily. The accuracy...
متن کاملAPPLICATION OF FUZZY EXPANSION METHODS FOR SOLVING FUZZY FREDHOLM- VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND
In this paper we intend to offer new numerical methods to solvethe fuzzy Fredholm- Volterra integral equations of the firstkind $(FVFIE-1)$. Some examples are investigated to verify convergence results and to illustrate the efficiently of the methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Mathematical Analysis
سال: 2019
ISSN: 0036-1410,1095-7154
DOI: 10.1137/17m1128101